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Abstract

Stability and transition problems of two dimensional boundary-layers with heated walls have been studied numer-

ically using the linear stability theory. Incompressible stability equations have been modified to account for the varia-

tion of temperature dependent fluid properties across the layer. The equations obtained have been solved with an

efficient shoot-search technique. Low speed flows of air and water have been analyzed with a wide range of heat transfer

rates. In addition to the mean velocity profile characteristics, variable viscosity and density terms in the stability equa-

tions also have considerable influence on the results of the stability and transition analysis.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The stability and transition problems of boundary-

layer flows with heat transfer effects are interesting for

a number of practical applications. Among these, the

flow of air over heated aircraft wings (to prevent icing)

or fluid flow through heat exchangers may be consid-

ered. For such cases, the first effect of heating (or cool-

ing) is to modify the velocity boundary-layer profile

due to variable fluid properties. In terms of the stability

problem, the governing equations are modified to ac-

count for the variable property effects. For these rea-

sons, it is beyond any doubt that the stability and

transition properties of such flows should be different

from isothermal flows. Investigation of the extent of this
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deviation is an interesting problem both practically and

academically.

The boundary-layer stability problem under the effect

of heat transfer has been studied by several scientists in

the past. Among these, Wazzan et al. [1] have reported a

numerical study on the stability of water flow over

heated or cooled flat plates. In that study, the Orr–

Sommerfeld equation has been modified to account for

variable viscosity in the boundary-layer and has been

integrated starting from the freestream towards the wall.

It has been found out that heat transfer has considerable

influence on stability properties. The results show that

heating stabilizes the flow and this is largely due to

velocity profile shape. It is also mentioned that viscosity

gradient in the layer has a strong destabilizing effect.

The work of Hauptmann [2] is significant in the sense

that an algebraic expression has been obtained that

relates the heat transfer rate to the point of instability

following a perturbation method. The results are valid
ed.
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Nomenclature

A disturbance amplitude
~Ai characteristic vector of the eigenvalue prob-

lem

aij element of the characteristic vector

C�
p specific heat at constant pressure

c cr+ici, complex wave velocity

cr phase velocity

ci amplification factor

cg oxr/oa, group velocity

F qU, dimensionless streamfunction

H d*/h, boundary-layer shape factor

k* heat conduction coefficient

L*
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m�ex�=U

�
e

p
, Blasius length scale

n ln(A/A0) amplitude ratio

P mean pressure

p instantaneous pressure

p̂ perturbation pressure

�p amplitude function of the perturbation pres-

sure

R U�
eL

�=m�e , Reynolds number based on Blasius

length scale

Rx* U�
ex

�=m�e , Reynolds number based on

streamwise distance, x*

Rd* U�
ed

�=m�e , Reynolds number based on bound-

ary-layer displacement thickness, d*

S�1 110 K, constant in Sutherland�s viscosity

formula

T mean temperature

Tr T*/273.15 K, dimensionless temperature in

fluid property relations for water

t time

U,V mean velocities in streamwise and normal

directions

u,v instantaneous velocities in streamwise and

normal directions

û; v̂ perturbation velocities in streamwise and

normal directions

�u;�v amplitude functions of the perturbation

velocity components

Xi unknown functions in the system of equa-

tions

x,y Cartesian coordinates
~X i solution vector of the eigenvalue problem

Greek symbols

a wave number

b Falkner–Skan parameter

d* boundary-layer displacement thickness

h boundary-layer momentum thickness

ki characteristic value of the eigenvalue prob-

lem

l dynamic viscosity

m l/q, kinematic viscosity

q density

r l�C�
p=k

�, Prandtl number

rxx,ryy normal stress components

sxy,syx shear stress components

X xr/R dimensionless frequency of the propa-

gating wave

x a(cr+ici), complex frequency

Subscripts

cr critical condition

iso isothermal condition

e boundary-layer edge condition

0 property evaluated at the first neutrally sta-

ble point

tr transition condition

w wall condition

Superscripts

* dimensional quantity
0 y-derivative

^ perturbation quantity

– amplitude of the perturbation quantity
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for low to moderate heat transfer rates and show that

water flows are stabilized by heating, whereas air flows

are destabilized.

On the other hand, Herwig and Schäfer [3] have

solved an extended version of the Orr–Sommerfeld

equation including the effects of temperature and pres-

sure dependent fluid properties. These effects have been

treated by using Taylor series expansions with respect to

temperature and pressure. It has been observed that

decreasing the viscosity in the near wall region stabilizes

the flow, while a uniformly decreased viscosity has a de-

stabilizing effect.
In a more recent study, Schäfer et al. [4] have inves-

tigated the effect of heat transfer on the stability of

boundary-layers by solving an extended version of the

Orr–Sommerfeld equation also introduced in Ref. [3].

Heat transfer rates were assumed to be small and the

leading order effects were found to be the temperature

and pressure dependencies of viscosity and density.

The asymptotic solutions obtained hold for all Newto-

nian fluids with Prandtl number remaining as a para-

meter.

The study of Lee [5] as mentioned in [6], treats the

effects of heat transfer on the stability and transition
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properties of a water boundary-layer on a flat plate. To

this end, a modified version of the Orr–Sommerfeld

equation has been solved which accounts for tempera-

ture dependent viscosity. Low to moderate heat transfer

rates have been considered. Both the critical Reynolds

number and the transition Reynolds number increase

with increasing wall temperature.

On the experimental side, the work of Liepmann and

Fila [7] is important. Liepmann and Fila have related the

transition Reynolds number of an air flow to the wall

temperature. They have found that the transition occurs

earlier when the plate is heated and they have held the

deviation of the velocity profiles from the Blasius profile

responsible for this.

In the present study, the stability and transition is-

sues of low speed boundary-layers under the influence

of heat transfer are addressed. For this purpose, a fourth

order differential equation system is solved in which the

effects of temperature dependent viscosity, density and

Prandtl number are accounted for. Here, due to low

speed flow, pressure dependencies of fluid properties

are assumed to be much smaller than temperature

dependencies and hence are neglected (see also [3,4]).

The equations solved in this study are the extended ver-

sions of the stability equations for incompressible flow

proposed by Mack [8] and are solved by an efficient

shoot-search technique described in detail by Özgen

et al. [9]. The equations and the solution method are

not restricted to low heat transfer rates but they are lim-

ited to the validity ranges of the empirical relations used

for fluid properties (density, viscosity and the Prandtl

number). In this context, the study complements and

extends the previous work on the topic. Transition prob-

lem is also addressed, which was left relatively un-

touched by previous investigators. In addition to these,

comparisons with previous experimental data are done

as well.

First, the basic equations and their solution methods

will be introduced in Sections 2 and 3, respectively. In

Section 4, the results will be presented and discussed. Fi-

nally, the conclusions gathered from the study will be

summarized in Section 5.
2. Basic equations

2.1. Stability equations

The system of equations governing the stability prob-

lem are derived starting from the equations of motion

for two dimensional compressible flow written in Carte-

sian coordinates [10]:

ou�

ot�
þ u�

ou�

ox�
þ v�

ou�

oy�
¼ � 1

q�
op�

ox�
þ 1

q�
or�

xx

ox�
þ 1

q�

os�xy
oy�

;

ð1Þ
ov�

ot�
þ u�

ov�

ox�
þ v�

ov�

oy�
¼ � 1

q�
op�

oy�
þ 1

q�

os�yx
ox�

þ 1

q�

or�
yy

oy�
;

ð2Þ

oðq�u�Þ
ox�

þ oðq�v�Þ
oy�

¼ 0: ð3Þ

Eqs. (1) and (2) are the x- and y-momentum equations,

respectively, while Eq. (3) is the continuity equation.

Asterisks (*) denote dimensional properties. The stress

components are given as:

r�
xx ¼ 2l� ou

�

ox�
; s�xy ¼ s�yx ¼ l� ou�

oy�
þ ov�

ox�

� �
;

r�
yy ¼ 2l� ov

�

oy�
: ð4Þ

Flow is separated into steady mean and unsteady per-

turbation components:

u�ðx�; y�; t�Þ ¼ U �ðx�; y�Þ þ û�ðx�; y�; t�Þ; ð5Þ
v�ðx�; y�; t�Þ ¼ V �ðx�; y�Þ þ v̂�ðx�; y�; t�Þ; ð6Þ
p�ðx�; y�; t�Þ ¼ P �ðx�; y�Þ þ p̂�ðx�; y�; t�Þ: ð7Þ

Perturbations are taken as two dimensional because

according to Squire theorem two dimensional distur-

bances lead to instability earlier than three dimensional

ones. It has been shown by Yih [11] that the theory holds

for variable property flows as well as constant property

flows.

These terms are inserted into Eqs. (1)–(3) and several

simplifying assumptions are made:

	 According to linear theory, disturbances are small so

quadratic terms can be neglected (û�oû�=ox�, etc.).
	 Mean flow satisfies the equations of motion and is

steady.

	 Parallel flow assumption is used, i.e. U*=U*(y*) only

and V*=0.

	 Similarly, temperature is a function of y* only,

T*=T*(y*).

	 Fluid properties are functions of temperature (hence

y*) only, l*=l*(T*), q*=q*(T*) and r=r(T*).

Resulting equations for the perturbations are made

dimensionless by choosing a suitable reference for each

variable. Velocities are normalized by U �
e , lengths by

L* (the choice for this parameter will explained below),

temperatures by T �
e , densities by q�

e , pressures by q�
eU

�2
e

and viscosities by l�
e . Subscript e denotes boundary-layer

edge (or freestream) properties. Using the temporal sta-

bility formulation, the disturbances can be expressed in a

Fourier series:

ðû; v̂; p̂Þ ¼ ð�u;�v; �pÞeiaðx�ctÞ; ð8Þ

where a is the wave number, c=cr+ici is the complex

wave velocity and the quantities with a bar are the dis-

turbance amplitudes for their respective flow variables.
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While the real part of the complex wave velocity is the

phase velocity, the imaginary part is the amplification

factor determining whether a disturbance is stable

(ci<0), neutrally stable (ci=0) or unstable (ci>0).

Following the steps mentioned above, the following

set of equations for the perturbation quantities are ob-

tained:

iðaU � xÞ�uþ �vU 0

¼ � 1

q
ia�p þ l

qR
ð�u00 � 2a2�uþ ia�v0Þ þ l0

qR
ð�u0 þ ia�vÞ;

ð9Þ

iðaU � xÞ�v ¼ � 1

q
�p0 þ l

qR
ð2�v00 � a2�vþ ia�u0Þ þ 2l0

qR
�v0;

ð10Þ

qðia�uþ �v0Þ þ q0�v ¼ 0: ð11Þ
In the above, primes ( 0) denote differentiation with re-

spect to y and x=ac is the complex frequency. Reynolds

number is defined as R ¼ q�
eU

�
eL

�=l�
e . These equations are

subject to the wall and freestream boundary conditions:

�uð0Þ ¼ �vð0Þ ¼ 0; ð12Þ

�u;�v ! 0 as y ! 1: ð13Þ
Isothermal stability equations can be obtained by substi-

tuting l=1, q=1, l 0=0 and q 0=0 to Eqs. (9)–(11).

As the boundary conditions are homogeneous, the

above system constitutes an eigenvalue problem and

there is a non-trivial solution only for certain combina-

tions of a, x and R. The dispersion relation can be ex-

pressed as:

x ¼ Wða;RÞ: ð14Þ

Eqs. (9)–(11) constitute a fourth order system for �u, �v, �p
and �u0. These equations can be combined to yield a sin-

gle fourth order equation which is in fact an extended

version of the Orr–Sommerfeld equation solved by Waz-

zan [1]. In this study, the current equations has been re-

tained because they require only the first derivative of

viscosity with respect to temperature and they are more

general in the sense that they can be extended to treat

high speed flows as well.

The above equations can be reduced to a system of

first order equations by defining four new variables as

follows:

X 1 ¼ a�u; ð15Þ

X 2 ¼ a�u0; ð16Þ

X 3 ¼ �v; ð17Þ

X 4 ¼ �p: ð18Þ

With these definitions, Eqs. (9)–(11) can be rewritten as

follows:
X 0
1 ¼ X 2; ð19Þ

X 0
2 ¼ a2 þ i

qR
l

ðaU � xÞ
� �

X 1 �
l0

l
X 2

þ a
qR
l

U 0 þ ia2 q0

q
� l0

l

� �� �
X 3 þ ia2 R

l
X 4; ð20Þ

X 0
3 ¼ �iX 1 �

q0

q
X 3; ð21Þ

X 0
4 ¼ 2i

q0

q
l
R
� 2i

l0

R

� �
X 1 � i

l
R
X 2

þ �iqðaU � xÞ � 2
q00

q
l
R
þ 4

q02

q2

l
R

�

�a2 l
R
� 2

q0

q
l0

R

�
X 3: ð22Þ

The boundary conditions in Eqs. (12) and (13) are

written in terms of the new variables:

X 1ð0Þ ¼ X 3ð0Þ ¼ 0; ð23Þ

X 1;X 3 ! 0 as y ! 1: ð24Þ
2.2. Mean flow equations

The mean flow velocity and temperature profiles need

to be calculated accurately for the solution of Eqs. (19)–

(22). To this end, momentum equation:

2 lU 0ð Þ0 þ FU 0 ¼ 0; ð25Þ

and the energy equation:

2
l
r
T 0

� �0
þ FT 0 ¼ 0; ð26Þ

have been solved. Here, F 0=qU, T ¼ T �=T �
e and

r ¼ l�C�
p=k

� is the Prandtl number. In the above, primes

denote derivatives with respect to y=y*/L* where

L� ¼
ffiffiffiffiffiffi
m�ex�

U�
e

q
. Notice that Eq. (26) allows variable Prandtl

numbers. Eqs. (25) and (26) are subject to the following

boundary conditions:

F ð0Þ ¼ Uð0Þ ¼ 0; T ð0Þ ¼ T �
w=T

�
e ; ð27Þ

U ; T ! 1 as y ! 1; ð28Þ

where T �
w and T �

e are the specified wall and freestream

temperatures. Although the constant wall temperature

case has been treated in this study, the constant heat flux

case could also be treated easily. For the latter, Eq. (26)

must be solved with the constant heat flux boundary

condition and the stability problem is effected through

the mean flow velocity and temperature profiles thus ob-

tained.

In order to include the effects of variable properties in

the analysis, the relevant parameters and their deriva-

tives must be accurately calculated. Viscosity, density
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and Prandtl number variations of water with respect to

temperature are [6]:

l� ¼ 1:79369 � 10�3=ð35:155539� 106:9718715T r

þ 107:7720376T 2
r � 40:5953074T 3

r þ 5:639148T 4
r Þ;
ð29Þ

q� ¼ 1002:28ð0:803928þ 0:4615901T r

� 0:2869774T 2
r þ 0:0234689T 3

r Þ; ð30Þ

r ¼ 13:66=ð73:376906� 208:7474538T r

þ 197:7604676T 2
r � 68:8626188T 3

r þ 7:4779458T 4
r Þ;
ð31Þ

where Tr=T*/273.16, T* is in Kelvin (K) and all quanti-

ties are in SI units. From this formulation, it can be seen

that the kinematic viscosity of water, mwater, decreases
with increasing temperature.

On the other hand, Sutherland�s viscosity law and

the ideal gas relation have been used to determine the

viscosity and the density of air, respectively:

l ¼ l�

l�
e

¼ T �

T �
e

� �3=2 T �
e þ S�

1

T � þ S�
1

; ð32Þ

q ¼ q�

q�
e

¼ T �
e

T � : ð33Þ

In Sutherland�s law, S�
1 is a constant and for air S�

1 ¼ 110

K [10]. For air, the Prandtl number has been taken to be

a constant equal to 0.72 which is a good approximation

for temperatures between �50 and 300 �C [10]. From the

above relations, it can be seen that the kinematic viscos-

ity of air, mair increases with increasing temperature.
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Buoyancy effects may have been taken into account

as well, however according to Schlichting [10], for the

buoyancy forces to be of the same order of magnitude

as the inertia and viscous forces, the Grashof number

must be of the same order of magnitude as the Reynolds

number squared, i.e. G�R2, which occurs only when

velocities are very low and temperature differences are

very high. This has been checked for the lowest Rey-

nolds number (critical Reynolds number Rcr) and the

highest heating rate case both for air and water bound-

ary-layer flows, and in each case the Grashof number

turned out to be at least three orders of magnitude smal-

ler than the Reynolds number squared. Therefore, buoy-

ancy effects can be safely neglected for our purposes.

2.3. Transition prediction

For the transition calculations, the Smith–Van Ingen

en method has been employed. As a wave travels in the

flow direction, its angular frequency x�
r remains con-

stant. The standard form of the dimensionless frequency

is:

X ¼ x�
rm

�=U �2
e ¼ xr=R; ð34Þ

which also remains constant for a flat plate [12]. From

Fig. 1, it can be seen that this wave at first passes

through the stable region. It is damped until R0, then

amplified until R1 and then damped again further down-

stream. At any station corresponding to R>R0, ampli-

tude A of a temporal normal mode having frequency

X can be related to its amplitude A0 at R0 by using the

following relation:

n ¼ ln
A
A0

� �
¼ 2

Z R

R0

xi

cg
dR: ð35Þ
1500 2000 2500
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In the above, cg=oxr/oa is the group velocity. The value

of A0 is linked to the disturbance environment through

some receptivity mechanisms [13]. At each R, n repre-

sents the amplitude ratios of the disturbances.

Trajectories of constant frequency waves on a R–a
graph are shown in Fig. 1 for the isothermal case. When

the integral in Eq. (35) is evaluated for constant X val-

ues, the amplitude ratios depicted in Fig. 2 are obtained.

In Fig. 2, the curve that is tangent to all amplitude

ratio curves is the envelope curve and determines the

maximum amplification enmax for a given Reynolds num-

ber. It has been found that the experimental transition

data correlates well with (A/A0)max�e9 as reported by

Smith and Gamberoni [14]. Hence, according to these

findings, nmax=9 and this is the value used in this study.

It has to be pointed out that the linear stability the-

ory can calculate neither A nor A0, but it can calculate

the total amplification as a normal mode travels through

the unstable region which is sufficient for transition pre-

diction using the en method.
3. Solution method

At a distance sufficiently far away from the wall,

U=1 and all y-derivatives are zero to a good approxima-

tion and Eqs. (19)–(22) have constant coefficients per-

mitting solutions of the form:

~X
i ¼ ~A

i
ekiy i ¼ 1; 2; 3; 4: ð36Þ

Here, ki are the characteristic values, ~X i and ~Ai are the

four component solution and characteristic vectors cor-

responding to the ith characteristic value, respectively.

Characteristic values of the above system are:
k1;2 ¼ 
a; ð37Þ

k3;4 ¼ 
 a2 þ iRðaU � xÞ
� �1=2

: ð38Þ

Only the characteristic values with a negative sign are

relevant because of the freestream conditions given in

Eq. (24). Elements of the characteristic vectors corre-

sponding to the remaining characteristic values can eas-

ily be found.

Elements of the characteristic vector corresponding

to k1=�a:

a11 ¼ �ia; ð39Þ

a12 ¼ ia2; ð40Þ

a13 ¼ 1; ð41Þ

a14 ¼
i

a
ðaU � xÞ: ð42Þ

Elements of the characteristic vector corresponding

to k3=�[a2+iR(aU�x)]1/2:

a31 ¼ 1; ð43Þ

a32 ¼ � a2 þ iRðaU � xÞ
� �1=2

; ð44Þ

a33 ¼ i= a2 þ iRðaU � xÞ
� �1=2

; ð45Þ

a34 ¼ 0: ð46Þ

The solution corresponding to k1 is the inviscid solu-

tion, whereas the solution corresponding to k3 is the vis-
cous solution. With these, elements of the solution

vector are as follows:
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X 1ðyÞ ¼ �c1iae�ay þ c3e
� a2þiRðaU�xÞ½ �1=2y ; ð47Þ

X 2ðyÞ ¼ c1ia2e�ay

� c3 a2 þ iRðaU � xÞ
� �1=2

e� a2þiRðaU�xÞ½ �1=2y ;
ð48Þ

X 3ð yÞ ¼ c1e�ay þ c3
i

a2 þ iRðaU � xÞ½ �1=2

� e� a2þiRðaU�xÞ½ �1=2y ; ð49Þ

X 4ðyÞ ¼ c1
i

a
ðaU � xÞe�ay ; ð50Þ

where c1 and c3 are constants. These solutions provide

the initial conditions for the integration of Eqs. (19)–

(22). For the integration, a variable stepsize fourth order

Runge-Kutta method has been used [15]. As integration

proceeds from the freestream towards the wall, the vis-

cous solution grows much faster than the inviscid solu-

tion and the linear independence between the two

solutions is lost. Therefore, before this happens,

Gram–Schmidt orthonormalization technique has to

be used [8],[12]. For the current study, the algorithm

has been applied at every y=0.1 interval and no difficul-

ties have been encountered.

The stability diagrams have been obtained using

Newton iteration in two variables. This method requires

two initial points on the curve so that the iteration can

proceed in the specified Reynolds number direction.

These two points have been found using a function min-

imization algorithm utilizing the simplex method [16].
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Fig. 3. (a) Velocity profiles and (b) profile curvature d
At the nose region, Newton iteration fails and the proce-

dure is repeated for the remaining branch of the curve

so that the two branches meet at the nose region.
4. Results and discussion

The heat transfer effect manifests itself in two ways

for the problem in hand. First, the velocity profile shape

deviates from the Blasius profile due to variation of fluid

properties with temperature. Second, additional terms

having derivatives of viscosity and density appear in

the stability equations. Viscosity varies in opposite

trends with temperature for water and air so the effect

of this parameter is expected to be different for these flu-

ids. Therefore, stability and transition characteristics of

water and air flows will be studied separately below.
4.1. Stability and transition characteristics of water flow

Dynamic viscosity of water decreases with increasing

temperature and because of this a heated wall yields a

negative second derivative of velocity at y=0 (no inflec-

tion point in the profile) [6], see also Fig. 3b. Moreover,

the velocity defects of the profiles become significantly

less when the heat transfer rate is increased as can be

seen from the profiles shown in Fig. 3a. This situation

resembles the case of Falkner–Skan profiles with favor-

able pressure gradient.

Neutral stability curves for some heat transfer rates

can be seen in Fig. 4. Apparently, heating the wall shifts

the curves towards higher Reynolds numbers and hence
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has a stabilizing effect. There is a continuous and rapid

increase in the critical Reynolds number until T �
w �

T �
e ¼ 40 �C case but as the wall is heated further, the

stability curves start shifting towards lower Reynolds

numbers. Therefore, there is an optimum wall tempera-

ture where the maximum stabilization is achieved. This

reversed trend has been observed by Wazzan et al. [1]

as well, almost at the same temperature observed here.

Neutral stability curves for cooled cases are depicted

in Fig. 5. For the cooled cases, the critical Reynolds

numbers are always smaller than the isothermal case.

Furthermore, the neutral stability curve shapes are
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Fig. 5. Neutral stability curves for
remarkably different from the heated and isothermal

cases. At high Reynolds numbers, upper branches of

the curves become flat which is typical of Rayleigh (or

inviscid) instability. For these cases, the second deriva-

tive of the velocity profile vanishes at some distance

from the wall and this implies instability according to

Rayleigh�s first theorem.

Having observed that heating has a stabilizing effect,

one wonders what the dominant factor for this stabiliza-

tion is. What differs in the heated case compared to the

isothermal case is the velocity profile shape and the var-

iable fluid properties. First of all, it is well known that
7500 10000 12500
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water flow with cooled wall.
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profiles with smaller velocity defects are more stable as

demonstrated by Falkner–Skan profiles. Therefore, the

strong stabilization of heated water flows may be attrib-

uted to this factor. On the other hand, variable density

and viscosity enter the problem through the stability

equations as well and in order to get an idea about the

individual and combined effects of these factors, a simple

numerical experiment has been performed. For this,

T �
w � T �

e ¼ 40 �C case (the most stable case) has been se-

lected. The results of this numerical experiment are sum-

marized in Table 1. In the first four cases presented, the

velocity profile obtained from non-isothermal equations

of motion has been used. The first case in the table

shows the result obtained by inserting the non-isother-

mal profile into the non-isothermal stability equations.

The second case is for the non-isothermal profile fed into

the isothermal stability equations. The third and fourth

cases are again for the non-isothermal profile fed into

the non-isothermal stability equations but with only

the viscosity variation and the density variation allowed,

respectively. The difference in the critical Reynolds num-

bers between the first and the second case suggests that

the variable property terms in the stability equations

have a strong destabilizing effect and this is mainly due

to viscosity variation as can be inferred from the third

and fourth cases. Here, it is more convenient to base

the discussions on kinematic viscosity because it repre-

sents both the diffusivity (destabilizing effect) and dissi-

pation (stabilizing effect). It appears that decreased

kinematic viscosity near the wall (as a result of heating)

destabilizes the flow.

Variable density has a very weak stabilizing effect, as

can be seen from the same table. The effect is weak

because water is essentially an incompressible fluid.

Although the density is smaller near the wall and higher

away from the wall (heavier fluid at the top), in the ab-

sence of gravitational effects this situation is stabilizing

contrary to intuition because smaller fluid density near

the wall increases the kinematic viscosity there and this

is a stabilizing effect, in agreement with the discussion

above.

For comparison, the critical Reynolds number corre-

sponding to the isothermal Falkner–Skan profile with

the same boundary-layer shape factor has also been in-

cluded. The shape factor for the profile is 2.22 and the
Table 1

Critical Reynolds numbers given by isothermal and non-

isothermal stability equation (T �
w � T �

e ¼ 40 �C) (water)

Case Rd*cr

l=l(y), q=q(y) 11,562

l=1, q=1 21,413

l=l(y), q=1 11,501

l=1, q=q(y) 21,433

l=1, q=1, b=0.977 12,396
Falkner–Skan parameter is b=0.977. The difference of

the critical Reynolds numbers for this case and the sec-

ond case is worth some attention because both of these

results are coming from the isothermal stability equa-

tions for two different profiles having identical shape

factors. This comparison shows that the boundary-layer

shape factor alone is not sufficient to correlate stability

data. The distribution of U and U 0 in the profile obvi-

ously plays a very important role. Moreover, a simple

shape factor correlation cannot explain the destabiliza-

tion occurring for heating rates greater than T �
w � T �

e ¼
40 �C.

These results show that the main stabilizing effect is

due to the velocity profile characteristics, whereas vari-

able properties (in the stability equations) have a strong

destabilizing effect. The latter effect can be reasoned

physically as follows: as a result of heating, dynamic

and kinematic viscosities of water increases as we move

from the wall towards the freestream. It is well known

that the kinematic viscosity has two roles in the stability

phenomenon. First, it diffuses the vorticity created by

high shear near the wall (destabilizing effect) and second,

it dissipates the disturbance energy (stabilizing effect). At

low Reynolds numbers the stabilizing effect is dominant

but at high Reynolds numbers the destabilizing effect be-

comes important. The critical Reynolds number corre-

sponds to the condition when these two effects are of

equal strength. For heated cases, the critical Reynolds

number increases because of the profile characteristics.

On the other hand, due to the reduced kinematic viscos-

ity near the wall, the disturbance energy created near the

wall cannot be dissipated as effectively and therefore the

disturbances are in a way trapped in to the thin shear

layer near the wall. For this reason, kinematic viscosity

stratification has a strong destabilizing effect but not

strong enough to overcome the stabilizing effect of the

velocity profile characteristics.

The critical Reynolds numbers obtained in the anal-

ysis have been compared to the results reported by other

scientists in the literature. Fig. 6 depicts a comparison

with the results reported by Wazzan et al. [1] for the en-

tire range of heat transfer rates considered. It can be

seen that the agreement is excellent for low to moderate

heating rates but it is not as good for higher heat trans-

fer rates. Our results are consistently lower than theirs.

Surprisingly, the agreement gets better at highest heating

rates. The maximum difference occurs at Tw�Te=40 �C
where our result is 35% lower than theirs. The differ-

ences may be due to the way variable properties are trea-

ted in the two computations. For example, it is not clear

whether variable Prandtl number effect has been taken

into account by Wazzan et al. which may have a signif-

icant effect. Also, Wazzan et al. have solved a modified

Orr–Sommerfeld equation that requires the second

derivative of viscosity with respect to temperature. Keep-

ing in mind that the viscosity law used is an empirical
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Fig. 6. Comparison of critical Reynolds numbers calculated by Wazzan et al. and the present study for water flow.
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one, higher order derivatives will normally amplify the

errors introduced with this law. Therefore, the present

formulation has an advantage over the one used by

Wazzan et al. in the sense that it requires only the first

derivative. On the other hand, Wazzan et al. mention

that the critical Reynolds number for the non-isothermal

profile using the isothermal Orr–Sommerfeld equation is

140,000 which seems to be an order of magnitude higher

than the results found in the present study. Although the

shape factor is not a good parameter to correlate stabil-

ity data for the current problem, it is hard to understand

why such a high critical Reynolds number has been ob-

tained while the Falkner–Skan profile with a similar

shape factor yields a much smaller critical Reynolds

number. With no heat transfer related terms, the Orr–

Sommerfeld equation has only the velocity and second

derivative of velocity to work with and two profiles

should yield critical Reynolds numbers at least with

comparable magnitudes.

In spite of all this, the trends of the critical Reynolds

numbers have been well captured by both calculations

and the temperature where the stability reversal occurs

is in remarkable agreement. As a result, the agreement

is judged to be fair.

The studies on the current topic reported in the liter-

ature are based on various methods like asymptotic,

perturbation, shooting and finite difference methods.

Examples to perturbation and asymptotic studies are

those of Hauptmann [2] and Herwig and Schäfer [3],

respectively and are valid for small heating rates. The

method used by Wazzan et al. [1] is a shooting method

like the present study. On the other hand, Lee [5] has

used a finite difference method. A separate graph for

comparisons with the results of the aforementioned

studies is presented in Fig. 7. While the agreement is
excellent for all data sets for low heating and cooling

rates, deviations become larger with increasing heat

transfer rates. Maximum deviations typically occur at

the highest value of the heat transfer rate depicted in

the figure. Overall agreement is very good but the pres-

ent results agree best with those of Lee. Asymptotic and

perturbation results deviate from the general trend out-

lined by higher order methods as the heat transfer rate

increases, as expected.

The results of the transition calculations are pre-

sented in Fig. 8. Also included in the figure are the

numerical results of Lee [5]. The trend for the variation

of the transition Reynolds numbers with increasing

heating rate is similar to that observed in critical Rey-

nolds numbers. The transition Reynolds number in-

creases as heating rate increases until T �
w � T �

e ¼ 45�,
but starts decreasing beyond this value of the heating

rate. The mechanisms causing this trend reversal are

similar to those causing it for critical Reynolds numbers.

Trend reversal is observed almost at the same tempera-

ture as in the critical Reynolds number case. Although

early loss of stability (low critical Reynolds number)

generally implies early transition, it is usually not possi-

ble to predict the transition Reynolds number as a func-

tion of the critical Reynolds number alone. In addition

to the critical conditions, an important parameter here

is the total amplification as a function of the wave fre-

quency. This functional relationship can only be estab-

lished through a thorough stability analysis using a

method like the one outlined in Section 2.3, and each

case must be treated separately.

On the other hand, the comparison of the present re-

sults with those reported by Lee [5] show very close

agreement. The results given by Lee are for low heat

transfer rates so whether the trend reversal occurring
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at higher heating rates is observed in that study or not is

unknown. It should be noted that Lee has used a mod-

ified Orr–Sommerfeld equation in his study and his re-

sults have been extracted from the graphs given in Ref.

[6] so part of the already small discrepancy can be attrib-

uted to that.

4.2. Stability and transition characteristics of air flow

Dynamic and kinematic viscosity increases with

increasing temperature for air which is an opposite trend
compared to that of water so one would expect the sta-

bility characteristics of heated air flow to be different

from those of water. First of all, an inflection point oc-

curs in the boundary-layer profile (see Fig. 9b) which

immediately calls for Rayleigh instability. Therefore, at

this point, it is appropriate to look at the effect of heat-

ing on the profile shapes, which are shown in Fig. 9a.

As can be seen, heating increases the velocity defect

in the profiles which usually means reduced stability.

On the other hand, the effect of heating is less pro-

nounced for air flow than for water flow. This is due
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to the fact that temperature dependence of viscosity is

much stronger for water than it is for air.

Fig. 10 depicts the neutral stability curves computed

for heated air flow. Contrary to water, air flow is contin-

uously destabilized with increasing heat transfer rate.

However, the destabilization is not as strong as the sta-

bilization of water. This is again due to relatively weak

dependence of viscosity on temperature for air. More-

over, there is no reversal of stability characteristics at

a critical heating rate. Although heating increases the

kinematic viscosity near the wall (stabilizing effect) be-

sides increasing the velocity defect (destabilizing effect),

this is not enough to stabilize the flow even at low Rey-
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Fig. 10. Neutral stability curves fo
nolds numbers where the stabilizing effect of kinematic

viscosity is most dominant.

Variation of the critical Reynolds number with heat

transfer rate is illustrated in Fig. 11. Also included are

the results reported by Hauptmann [2] and Schäfer

et al. [4]. These results are for low heat transfer rates

and it can be seen that the agreement is very good, espe-

cially with Hauptmann. As mentioned before, the results

reported by other scientists in the literature are mostly

from asymptotic or perturbation methods valid for low

heating rates. The deviation of these results from the

results of the present study is mainly due to this. It is

surprising that the results of Hauptmann, although
6000 8000 10000
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r air flow with heated wall.
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obtained from an older and simpler analysis keep up

very well with the results of the present study for the en-

tire range of heat transfer rates considered here.

The results of the present study have also been com-

pared with the experimental data of Harrison et al. [17]

and the results are shown in Fig. 12. Here the parameter

� ¼ ðT �
w � T �

eÞ=T �
e . Although there is some scatter in the

experimental data, in overall the results are in good

agreement and the decreasing trend has been well cap-

tured by the computations. The current results are sys-

tematically higher than the experimental ones, the

deviation increasing with increasing heat transfer rate.

A similar check to that made for water flows has also

been made here in order to assess the individual and
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Fig. 12. Comparison of critical Reynolds numbers of the present st
combined effects of the factors involved in the problem

and the results are presented in Table 2. Again, the first

four cases are for the non-isothermal velocity profile in-

serted into various forms of the stability equations mod-

ified for individual or combined effects of variable

viscosity and density. The fifth case corresponds to an

isothermal profile with the same boundary-layer shape

factor as the non-isothermal profile fed into the isother-

mal stability equations. From the first and second cases,

we understand that the combined effect of variable vis-

cosity and density terms in the stability equations is sta-

bilizing. On the other hand, the results of the second and

third cases show that variable viscosity terms alone are

stabilizing just like variable density terms alone as could
0.03 0.04 0.05 0.06
ε

Present study
Harrison et al (1991)
Curve fit to exp. data

udy with the experimental data of Harrison et al. for air flow.



Table 2

Critical Reynolds numbers given by isothermal and non-

isothermal stability equation (T �
w � T �

e ¼ 130 �C) (air)

Case Rcr

l=l(y), q=q(y) 185.05

l=1, q=1 119.50

l=l(y), q=1 145.90

l=1, q=q(y) 152.78

l=1, q=1, b=�0.1922 23.63
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be inferred from the results of the second and the fourth

cases. It is noteworthy that variable density has a more

significant effect for air flows than it has for water flows.

Although there is an adverse density stratification here,

the gravitational effects have not been taken into ac-

count and the only role of density here is to increase

the kinematic viscosity near the wall and this enhances

the stabilizing effect of the latter parameter. This trend

is in agreement with the case of water flow, where ad-

verse density stratification (in the absence of gravity)

causes stabilization as well.

Comparing the results of the second and fifth cases,

we again understand that the boundary-layer shape fac-

tor alone is not sufficient to correlate stability data.

Although the same isothermal equations have been used

for the two profiles, we see that the non-isothermal pro-

file is significantly more stable.

On the other hand, the transition calculations reveal

that the variation of the transition Reynolds number

resembles that of critical Reynolds numbers very closely,

i.e. there is a monotonous decrease with increasing heat

transfer rate as depicted in Fig. 13. As can be expected,

the variation is not very strong again because of weak

dependence of air viscosity on temperature. Here, we
–20 0 20 40
(T
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Fig. 13. Variation of the transition Reynolds nu
see once more that the critical conditions are closely re-

lated to transition conditions.

Fig. 14 shows the comparison of present results with

experimental data given by Liepmann and Fila [7]. Liep-

mann and Fila have conducted their experiments in a

low-turbulence wind tunnel and have reported two sets

of data, one corresponding to a turbulence level of

Tu=0.0005 and the other to Tu=0.0017. For the com-

parisons, the en method has been employed with a value

of n given by the following empirical formula which is

valid for Tu>0.001 [6]:

n ¼ �8:43� 2:4 ln T u: ð51Þ

Accordingly, for Tu=0.0017, n=6.875. Tu=0.0005 is

outside the range of validity of the above formula so

n=9 has been retained for that data set. On the other

hand, it is not clear whether this formula can be used

for flows with heat transfer. However, we understand

from Ref. [13] that n=9 can be used even for compress-

ible flows with heat transfer, so using the above formula

for low speed flows such as the ones treated in this study

should not cause any problems.

Although the decreasing trend with increasing heat

transfer rate has been well captured both by the experi-

mental data and the numerical results, there are severe

differences between the numerical values for the transi-

tion Reynolds numbers. The predictions of the present

method is approximately five to six times greater than

the experimental values. There can be several reasons

for this discrepancy, the most likely one being the way

transition is defined in both studies. Liepmann and Fila

clearly mention in their report that the first appearance

of turbulent bursts––that is occasional sudden changes

from a laminar profile to a turbulent profile––is taken

as the transition location. However, en method predicts
60 80 100 120 140

w  Te)/˚C–

mber with heat transfer rate for air flow.
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breakdown to turbulence location which is a later stage

of the transition process [10]. Therefore, it is reasonable

that the computed transition Reynolds numbers are

much higher than the experimental ones. Other factors

that may be contributing to the discrepancy are non-par-

allel effects and buoyancy which have not taken into ac-

count in the present study. Liepmann and Fila mention

that the freestream velocity was 8.19 m/s during the

experiments which can make non-parallelism an impor-

tant factor. For isothermal flows, critical Reynolds num-

bers calculated by solving the Orr–Sommerfeld equation

and those observed during experiments have been com-

pared in the past by different investigators and the exper-

imental results were found to be typically 20–25% lower
[18]. It can be argued that the transition Reynolds num-

bers calculated and measured could also be similarly

discrepant for isothermal flows. This suggests that,

non-parallelism could be an important factor even for

isothermal flows. Therefore, at least part of the differ-

ence between the numerical results reported in this study

and the experimental results reported by other scientists

is due to non-parallelism.

When each set of data in Fig. 14a is normalized by its

respective isothermal transition Reynolds number, part

of the discrepancy is removed as can be seen from Fig.

14b. Although experimental and numerical data still do

not agree well, it has to be remembered that the experi-

mental data of Liepmann and Fila have considerable
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scatter. When this and other considerations mentioned

above are kept in mind, the agreement is decidedly fair.

Although not specified in the report of Liepmann and

Fila, surface roughness may be another factor contribut-

ing to the disagreement of the results.

Another point worth mentioning is that for low heat

transfer rates, the experimental transition Reynolds

numbers for Tu=0.0005 and Tu=0.0017 are identical

which is not reflected by the results of the present study.

The decreasing trend of the transition Reynolds

number with increasing heat transfer rate has also been

observed and reported by Higgins and Pappas [19]

although the flow there is supersonic at a Mach number

of 2.4.
5. Conclusions

Stability and transition characteristics of heated

water and air flows have been studied numerically using

the linear stability theory. The results obtained show

that these characteristics are quite different for the two

fluids considered. Generally speaking, heating stabilizes

water flows, whereas it destabilizes air flows. It has been

shown that the boundary-layer velocity profile has the

strongest effect on the stability and transition character-

istics. The variable viscosity terms in the stability equa-

tions also have a strong effect for both of the fluids

considered. Finally, density has a significant effect on

air flows but its effect on water flows is negligible. When

the effects of variable viscosity and density in the stabil-

ity equations are combined so that the discussion is

based on the kinematic viscosity only, it has been in-

ferred that decreasing kinematic viscosity near the wall

has a destabilizing effect.

The method used in this study is quite general in the

sense that it can be extended to treat flows with different

geometries and regimes with varying levels of modifica-

tions and extensions. For example, three dimensional

mean flows could be treated with two or three dimen-

sional disturbances. Axisymmetric flows and flows with

pressure gradient can also be treated after a modest effort

for the modification of the governing equations. The

method can also be used for studying supersonic and even

hypersonic flows. For the problem in hand, the method is

not limited to low heat transfer rates for heated flows.

These are advantages over most of the other methods

used to solve the similar problem as those methods are

either limited to low heat transfer rates or are not fit for

extension to treat different geometries and flow regimes.
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